BBC and BT
UHD Internet Distribution

Phil Layton - BBC R&D
Barry Crabtree - BT Research
Proof-of-Concept

• OTT live distribution of World Cup (Brazil) & Commonwealth Games (Scotland) in UHD

• World Cup p60
 – satellite contribution

• CWG p50
 – end-to-end IP delivery
 – from camera to screen
Technologies Used

- **DASH**
 - Dynamic Adaptive Streaming over HTTP

- **HEVC**
 - High Efficiency Video Codec (H.265)
 - Reduce bitrate by 30-50% compared to H.264

- **p50/p60 Video**
 - No interlace
 - Impact on motion blur with sporting content
 - Need for p100/p120?

- **Main 10 profile (CWG only)**
 - Bitrate efficient
 - Better linearity
 - High dynamic range (future use)
Live video delivery via DASH

✓ No special infrastructure required
 ✓ Compatible with existing CDN architectures
✓ Client adaptation between video rates to mitigate network variability
✓ Flexible audio/video combinations (manifest)
✓ Pause/rewind are straightforward
 ❖ Introduces startup delay
World Cup Final - BT Tower Demonstration

- 5 superfast broadband lines to BT Tower
 - 3 set-top boxes
 - 1 reference board
 - 2 IDTVs LG & Samsung
 - 4K p60 @35Mbits/sec
Vixs
 • Xcode 6400 series SoC
 • libDash

Sagemcom
 • Broadcom
 • DASH-js

Humax
 • Broadcom
Commonwealth Games
Commonwealth Games Contribution Network
Distribution Architecture

- **Elemental Live encoder**
 - 12Gbits/sec input (4 3G SDI)
 - Parallel encodes
 - 35 Mbits/sec @ 3840x2160
 - 12Mbits/sec @ 1920x1080
 - DASH
 - 4 second segments
 - Manifest

- **Packager**

- **Origin server**

- **CDN**
 - Infinity lines

- **Hub**

- **TV/stb**
Distribution delays

- Encode
 - T_e (Unknown)
 - T_{ew} 15s allowed
- Repackage/upload
 - T_u <1s
- Manifest availability
 - T_c 404 TTL
- Download time
 - T_d, Typically $\frac{1}{2}$ to 1 times segment duration
- Client buffering
 - T_b (Unknown, might be 3 times segment duration)
- Decode and render
 - T_r (Unknown, likely to be fixed)

T_m Manifest availability set to 10s after repackage/upload starts
Lessons Learnt

• HEVC encoding
 – Live HEVC encoding very new technology
 • Bitrates 40% higher than estimated from offline encoding tests
 • Consistent across a number of encoder implementations
 – Insufficient processing capability to encode multiple representations in real-time
 – Main 10 support is not ubiquitous in decoders

• Client adaptation to variable network throughput
 – Unable to test thoroughly with 2 representations
 • DASH implementations were very simple
 • Clients did not track network bandwidth

• End-to-end delay
 – Typically 45s late compared to UHD broadcast
 – Delay increased in some receivers as event progressed
 – Delay is inherent but a better implementation should achieve 20s

• Network/Client interaction
 – Numerous detail issues identified
 • Number of connections opened by a client

• Home Networking Throughput
UHD – just more pixels?

• Better Pixels
 – Benefits to all screen sizes
 – High frame rate
 • 25fps → 50fps → 100fps
 – High dynamic range
 • 10 bit path
 – More colours – BT2020
 – Interaction with HEVC encoding

• Better audio
Conclusions

• Delivering UHD via DASH is viable
 – 3 BBC Sites
 – BT Tower event

• BT CDN infrastructure worked as expected
 – UHD bitrates supported

• Distribution encoders
 – Currently typically support 1UHD+1HD stream

• Production architectures
 – 4 x 3G is very difficult to use
Conclusions