

## Proof-of-Concept

- OTT live distribution of World Cup (Brazil) & Commonwealth Games (Scotland) in UHD
- World Cup p60
  - satellite contribution
- CWG p50
  - end-to-end IP delivery
  - from camera to screen







# Technologies Used

- DASH
  - Dynamic Adaptive Streaming over HTTP
- HEVC
  - High Efficiency Video Codec (H.265)
  - Reduce bitrate by 30-50% compared to H.264
- p50/p60 Video
  - No interlace
  - Impact on motion blur with sporting content
  - Need for p100/p120?
- Main 10 profile (CWG only)
  - Bitrate efficient
  - Better linearity
    - High dynamic range (future use)





# Live video delivery via DASH

- √ No special infrastructure required
  - ✓ Compatible with existing CDN architectures
- ✓ Client adaptation between video rates to mitigate network variability
- √ Flexible audio/video combinations (manifest)
- ✓ Pause/rewind are straightforward
- Introduces startup delay





# World Cup Final - BT Tower Demonstration









CER

C (7777) C

Vixs

Sagemcom

Humax

#### Vixs

- Xcode 6400 series SoC
- libDash

### Sagemcom

- Broadcom
- DASH-js

### Humax

Broadcom

## **Commonwealth Games**







# Commonwealth Games Contribution Network







### Distribution Architecture

12Gbits/sec input (4 3G SDI)



# Distribution delays







### **Lessons Learnt**

- HEVC encoding
  - Live HEVC encoding very new technology
    - Bitrates 40% higher than estimated from offline encoding tests
    - Consistent across a number of encoder implementations
  - Insufficient processing capability to encode multiple representations in real-time
  - Main 10 support is not ubiquitous in decoders
- Client adaptation to variable network throughput
  - Unable to test thoroughly with 2 representations
    - DASH implementations were very simple
    - · Clients did not track network bandwidth
- End-to-end delay
  - Typically 45s late compared to UHD broadcast
  - Delay increased in some receivers as event progressed
  - Delay is inherent but a better implementation should achieve 20s
- Network/Client interaction
  - Numerous detail issues identified
    - Number of connections opened by a client
- Home Networking Throughput





# UHD – just more pixels?

- Better Pixels
  - Benefits to all screen sizes
  - High frame rate
    - 25fps  $\rightarrow$  50fps  $\rightarrow$  100fps
  - High dynamic range
    - 10 bit path
  - More colours BT2020
  - Interaction with HEVC encoding
- Better audio











### Conclusions

- Delivering UHD via DASH is viable
  - 3 BBC Sites
  - BT Tower event
- BT CDN infrastructure worked as expected
  - UHD bitrates supported
- Distribution encoders
  - Currently typically support 1UHD+1HD stream
- Production architectures
  - 4 x 3G is very difficult to use





## **Conclusions**





