

"Immersive Audio with MPEG-H and MPEG-I"

Jürgen Herre

International Audio Laboratories Erlangen Erlangen, Germany

Overview

- During the recent years, Immersive Audio has become both technologically mature and available
- Long way from stereo to surround to 3D audio, both loudspeaker and headphone reproduction are important
 - Part 1: MPEG-H Audio A Brief Overview
 Extremely versatile codec for next-generation audio (NGA) systems
 - Part 2: MPEG-I Audio
 Immersive Audio for VR/AR in 3DoF and 6DoF
 - Based on MPEG-H
 - Standardization for 6DoF currently ongoing
 - Requirements, Architecture, Ongoing Process

Part 1:

"MPEG-H 3D Audio Coding – A Brief Overview"

Recent Standard for Universal Spatial / 3D Audio Coding

Goal: Faithful Reproduction of 3D Spatial Audio

- 3D Loudspeaker setups incl. 'height' / 'lower' speakers
 - Examples: 5.1+2 ... 7.1+4 ... 22.2
 - '3D' clearly increases spatial realism / envelopment
 - Plethora of loudspeaker setups, lack of compatibility
- Different production / representation paradigms:
 - Channels tied to a specific loudspeaker layout
 - Objects (waveforms + metadata) loudspeaker layout agnostic
 - Ambisonics ... HOA loudspeaker layout agnostic
- Efficient representation / distribution of 3D audio content?
 Compression needed (e.g. for wireless applications)

The MPEG-H 3D Audio Decoder Model Decoder Architecture

MPEG-H Audio Summary

- MPEG standard for universal and efficient representation of immersive / 3D audio content
 - Highly flexible in input paradigm (channels, objects, HOA)
 - Highly flexible w.r.t. output / rendering (22.2 ... stereo / binaural)
 - Arbitrary combinations of channels, objects, HOA possible
 - Interactivity, personal sound experience
 - Low-complexity profile for broadcast applications
 - Baseline profile for generic 3D applications (no HOA)
- Became 'International Standard' in February 2015/2017
- Very comprehensive standard for coded representation of 3D Audio; deployed since 2017 (e.g. South Korea)

Part 2:

"MPEG-I Immersive Audio for"

Ongoing Standardization on Audio for Virtual Reality (VR) and Augmented Reality (AR)

MPEG-I Audio Future ISO Standard on Immersive Media (VR/AR)

Objectives

- 3 Degrees of freedom: 3DoF / 3DoF+ (Phase 1)
 - User may turn head in any way (pitch/yaw/roll)
 - Requires *rotation* of sound image for binaural headphone playback
 - ⇒ This is already addressed by the existing MPEG-H Audio codec
- 6 Degrees of freedom: 6DoF (Phase 2)
 - Users may freely navigate (walk, teleport) and turn their head
 - Requires rotation and translation of sound image for binaural playback plus sophisticated modelling of many position-dependent acoustic effects
 - ⇒ To be developed newly ongoing standardization process

Ongoing Work Item: MPEG-I 6DoF Audio Some Requirements

- Intended for both Virtual Reality (VR) and Augmented Reality (AR)
- Playback via headphones (binaural) or loudspeakers
- Spatial sound reproduction (3D sound)
- Sound source models (directivity, spatial extent)
- Convincing simulation of room acoustics (indoor / outdoor)
- Geometry-based effects (occlusion/diffraction sound changes behind obstacles & corners)
- Fast moving sources (Doppler shifts)
- Social VR: Include live sounds of other users (e.g. virtual teleconferencing) and locally captured audio ...

Some MPEG-I 6DoF Use Cases Virtual Concerts

Some MPEG-I 6DoF Use Cases

Virtual Art, virtual exhibitions

Source: google.com

Some MPEG-I 6DoF Use Cases Social VR, Joint Experience

MPEG-I 6DoF Audio System Architecture

An MPEG-I 6DoF VR/AR Audio system will comprise

- Compressed representation of waveforms used in the VR/AR content (channel, object, HOA signals)
- Compressed representation of metadata that describes the properties of the sound sources, acoustic environment, ...
- Dedicated 6DoF rendering for headphones and loudspeakers

Basic decisions:

- Waveform carriage will employ MPEG-H 3D Audio codec
 - ⇒ Some forward/backward compatibility with MPEG-H Content
- Additional metadata and rendering to be developed during work item

MPEG-I Audio Renderer Architecture (from N18158)

MPEG-I 6DoF Audio Setting Up The Environment

Evaluation Platform:

- Real-time A/V 6DoF environment with unhindered body motion
- Hardware: PC + VR/AR Hardware (HMD incl. tracker and controllers)
 VR: HTC Vive Pro, AR: MS HoloLens(2)
- Visual host/rendering by Unity (i.e CG-based)
- Audio host: Max/MSP + different audio renderers to be evaluated (plugged into Max/MSP)

Content Description & Test Material:

- Defined simple XML-based uncompressed 6DoF scene description format as an "Encoder Input Format" (EIF)
- Collection of rich test material expressed in EIF testing all required rendering aspects (source size & directivity, occlusion, diffraction, room acoustics, ...)

MPEG-I 6DoF Audio Evaluation Platform - Overview

Example: Audio Object

Trumpet

- Position (x, y, z)
- Orientation (y, p, r)
- Directivity
- Gain
- mode="Continuous"

```
<AudioScene>
 <AudioStream id="signal:trumpet"
          file="armstrong.wav"
          mode="continuous" />
 <SourceDirectivity id="dir:trumpet"</p>
             file="trumpet.sofa" />
 <ObjectSource id="src:trumpet"
          position="2 1.7 -1.25"
          orientation="30 -12 0"
          signal="signal:trumpet"
          directivity="dir:trumpet"
          gainDb="-2"
          active="true" />
</AudioScene>
```


Creation of Test Material – Some Examples

"Singer In The Lab" (VR)

"Basket Ball" (VR)

"Singer In Your Lab" (AR)

Fountain Music VR (VR)

VR Test Scene: 'Downtown Bus' Reflections, moving sources and occluders

VR Test Scene: 'Virtual Basket Ball' - User Interaction

AR Test Scene: 'AR Portal'

Coupling of Acoustic Spaces, Occlusion/Diffraction etc.

Subjective Quality Assessment: Extrapolating Established Methods

Virtual MUSHRA-style panel pops up in test scene ("MUSHRA-VR")

Subjective Quality Assessment (2)

- Chosen for first test round: A/B Comparison Test methodology
- Requires only 2 renderers running in real time simultaneously

Current Snapshot of MPEG-I 6DoF Audio The "Hot Phase"

- 8 technology proposals submitted on November 10, 2021
- Competitive evaluation by large-scale subjective testing (VR & AR with headphone reproduction, 12 test sites worldwide)
- Selection of baseline technology based on test results in January 2021, then subsequent improvement until FDIS in 2023

Ultimately, the work item will establish a first *long-time stable format* for *compressed representation of audio for 6DoF VR / AR content* based on *MPEG-H 3D Audio* that can be used for consumer applications like broadcasting, streaming, social VR by 2023 ...

Thank You Very Much For Your Kind Attention!

Background: MPEG

- Over the past decades, ISO/MPEG standardization has been successfully driving the state of the art in perceptual audio coding, including:
 - MPEG-1 Audio incl. mp3 (1992)
 - MPEG-2 Advanced Audio Coding AAC (1997)
 - MPEG-4 High Efficiency AAC (2003 & 2004)
 - **...**
 - Unified Speech an Audio Coding USAC (2012)
 - MPEG-H 3D Audio (2015/17)
- MPEG-H Audio has been developed as an extremely versatile codec for next-generation audio (NGA) systems

MPEG-H 3D Audio Philosophy Embracing All Production Paradigms

- Channel-based input (C)
 - Traditional approach: Transmit signals for loudspeakers at precisely specified locations relative to listener (e.g. 2.0, 5.1, ... 22.2 ...)
 - Clear improvement from stereo to surround and '3D':

[Silzle et al. 2011]

(BAQ when 22.2 is the reference)

MPEG-H 3D Audio Philosophy Embracing All Production Paradigms (2)

- Object-based input (O)
 - Increasingly popular: Transmit 'object' signals to be rendered at target locations specified by associated metadata
 - Time-varying target locations (e.g. plane fly-over)
 - Personalized/interactive experience (e.g. adjust object characteristics)
 - Speaker layout agnostic, rendering to target setup
- Higher Order Ambisonics (HOA)
 - Transmit 'coefficient' signals corresponding to a spherical expansion of the sound field in a point. No direct relation to C or O.
 - Speaker layout agnostic, rendering to target setup

MPEG-I 6DoF Audio Relation to MPEG-H 3D Audio

MPEG-I 6DoF Audio ...

- extrapolates MPEG-H technology into the VR/AR world
- will accept MPEG-H content for use in VR/AR applications
 (→ content authoring)
- will be able to decode/render MPEG-H content
- content can be fed back into MPEG-H decoders

Some Literature On Subjective Testing

- T. Robotham, O. Rummukainen, J. Herre, and E. A. P. Habets: "Online vs. Offline Multiple Stimulus Audio Quality Evaluation for Virtual Reality", 145th AES Convention, Paper 10131, New York 2018
- T. Robotham, O. Rummukainen, J. Herre, and E. A. P. Habets: "Evaluation of Binaural Renderers in Virtual Reality Environments: Platform and Examples", 145th AES Convention, e-Brief 454, New York 2018
- O. Rummukainen, T. Robotham, S. Schlecht, A. Plinge, J. Herre, and E.A.P. Habets: "Audio Quality Evaluation in Virtual Reality: Multiple Stimulus Ranking with Behavior Tracking", Proc. of the Conference on Audio for Virtual and Augmented Reality (AVAR), Redmond, WA, USA, August 2018 (Best Peer-Reviewed Paper Award)

