

Role of AI in promoting European Accessibility Policy

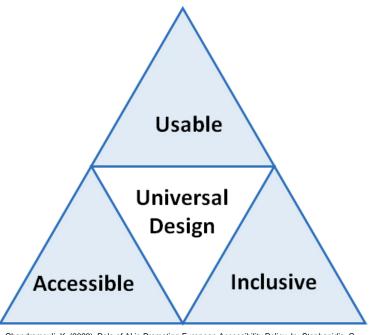
Enabling content economy for all

Krishna Chandramouli, **Queen Mary University of London**

Overview

- Introduction
- Universal design principles
- European accessibility policy
- Al powered media accessibility
- Conclusion and future work

Introduction


- Content economy has led the industrial growth for more than two decades
- Digital transformation services are playing a key role in society's evolution
- The adoption rate of digital services has created a digital divide for content accessibility
- Key to unlocking the full potential of content economy relies on bridging the digital divide and adopt the need for 'knowledge economy'

- Exponential growth of Artificial Intelligence (AI) solutions
- Recent applications include:
 - Image/Video description (audio transcription)
 - Generation of new images (raise of computer generated art)
 - Question and Answers (ChatGPT)
 - Language translation services
 - Automated audio description (AD) services
 - [etc]

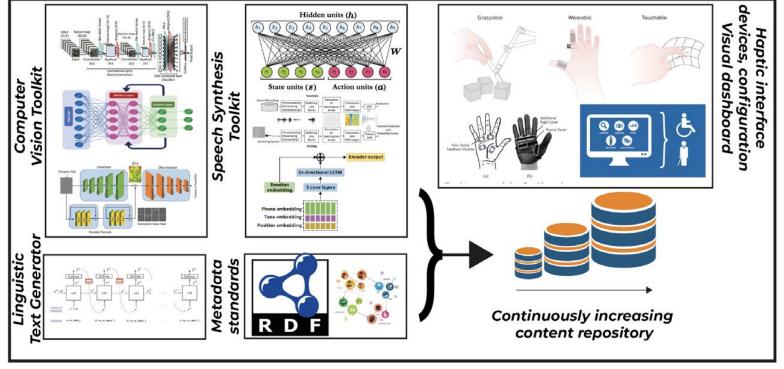
Universal design principles

- The notion of accessibility within digital transformation has been widely addressed within the context of information being shared through Internet services
- The triple synergy of Universal Design includes usability, accessibility and inclusion
- Despite the existence of standards, there is a lack of support for integrating such accessibility standards within individual organisations
- This is a key barrier for the adoption of universal design in enabling digital content access for all

Chandramouli, K. (2022). Role of AI in Promoting European Accessibility Policy. In: Stephanidis, C., Antona, M., Ntoa, S., Salvendy, G. (eds) HCI International 2022 – Late Breaking Posters. HCII 2022. Communications in Computer and Information Science, vol 1655. Springer, Cham. https://doi.org/10.1007/978-3-031-19682-9_77

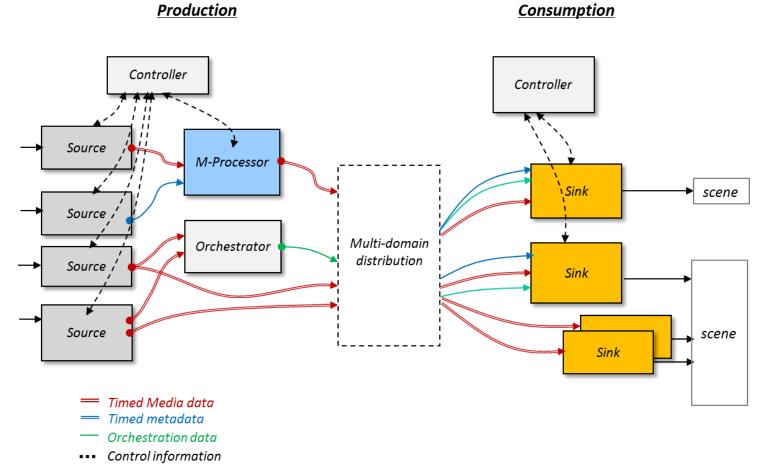
European Accessibility Policy

- International effort on digital content accessibility
 - Establishment of Web accessibility initiative (WAI), by W3C
 - WCAG 2.0 was published in December 2008
 - WCAG 2.1 in June 2018 and the first public draft of WCAG 2.2 in February 2020.
 - WCAG 2.0 became the international standard ISO/IEC 40500:2012. WCAG 2.1 contains all the success criteria of WCAG 2.0 plus 17 additional success criteria
 - WCAG recommendations help website designers and developers to better meet the needs of users with disabilities and older users.
- EAA is a step forward in reducing barriers for people with disabilities within the EU
 - Better accessibility of products and services that citizens use every day
 - Enhanced access to digital devices (such as phones), services (transport banking),
 - Enable assistance to people with sensory impairments to be able to fully participate in society on an equal basis with others,
 - Have better access to education and to enter more easily the open labour market



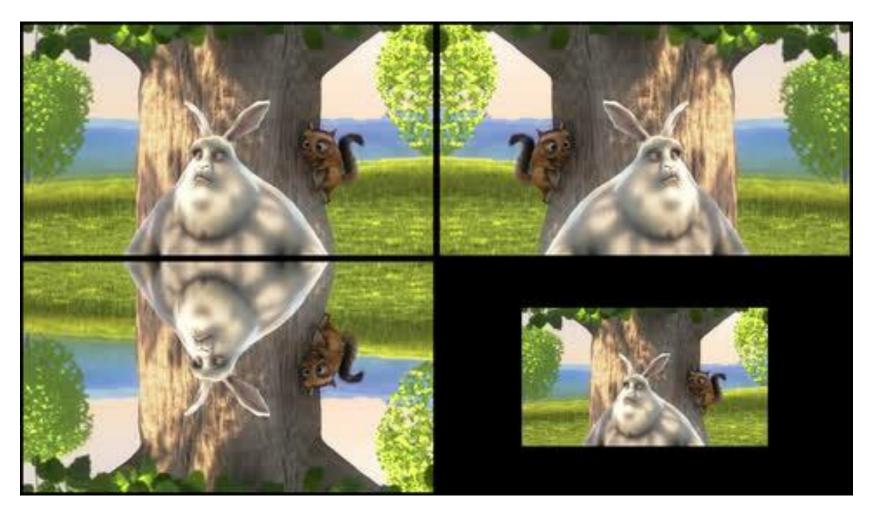
- According to ECAG recommendations, the four principles of accessibility could be defined as follows:
 - <u>Perceivable</u> Information and user interface components must be presentable to users in ways they can perceive.
 - Operable User interface components and navigation must be operable.
 - <u>Understandable</u> Information and the operation of user interface must be under-standable.
 - **Robust** Content must be robust enough that it can be interpreted reliably by a wide variety of user agents, including assistive technologies.

Al for content modality transformation



SHIFT project AI framework for accessibility and inclusion https://cordis.europa.eu/project/id/101060660

- The computer vision toolkit is included to extract knowledge embedded within the pictures and video sequences
- The extracted knowledge in terms of objects or key terms, will be converted into full-fledged sentences by the linguistic toolkit
- The textual descriptions are then subsequently transformed into speech with audio synthesis tool.
- The use of semantic technologies powered by Resource Description Framework (RDF) will ensure the semantic interpretability of information and ensure cross linking of relevant information
- The semantic repository populated by the analysis tools are then transformed into haptic language to be closely integrated within the wearable devices.
- The implementation of a multi-modal interoperability among the digital technologies, it is important to establish metadata standards to enable accessibility of media content.



Reference architecture for Media Orchestration International standard ISO/IEC 23001-13

https://mpeg.chiariglione.org/standards/mpeg-b/media-orchestration/wd-isoiec-23001-13-media-orchestration-more

- Transformation of individual experience to collective social experience
- Al for content orchestration for multiple users

https://zulko.github.io/moviepy/getting_started/compositing.html

Conclusion and future work

- Digital content is increasingly becoming pervasive
- A large number of organisations are adopting digital transformation strategies
- Need to bridge the gap between for citizen's right to access digital content
- Al technology offers new opportunities to be leveraged, through content transformation methodologies
- Reliability, trust, and transparency of AI algorithms should complement legal and ethical compliance
- Adoption of international standards reference architecture could pave the way forward in building advanced digital tools offering equal rights to content access

Thanks for your attention!

Krishna Chandramouli,
Queen Mary University of London
k.chandramouli@qmul.ac.uk